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We compare various evolutionary strategies to determine the ground-state 
energy of the +J  spin glass. We show that the choice of different evolution laws 
is less important than a suitable treatment of the "free spins" of the system. 
At least one combination of these strategies does not give the correct results, but 
the ground states of the other different strategies coincide. Therefore we are able 
to extrapolate the infinite-size ground-state energy for the square lattice to 
-1.401 _ 0.0015 and for the simple cubic lattice to -1.786-I-0.004. 
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1. I N T R O D U C T I O N  

Genet ic  a lgor i thms are in widespread use for comput ing  opt imal  solut ions 
of  complex problems  by means  of  the evolut ionary  principles of  genetic 
mixing and genetic muta t ion  respectively. I1' 2~ Genera l ly  these principles 
can be subdivided into two classes: first, methods  where only one genetic 
c o d e - - a  popu la t ion  conta in ing one m e m b e r - - i s  manipu la ted  i.e., the 
following generat ions  are created by muta t ion  of the genetic code of  the 
actual  generat ion,  and  second, methods  where the popula t ion  consists of  
two or  more  members  which may  in addi t ion  exchange genetic informat ion 
between each other. 

Both strategies were tested in var ious  ways to determine the ground-  
state energy of  the E d w a r d s - A n d e r s o n  spin glass by biological ly mot iva ted  
algori thms.  In principle all the authors  agree by initially calculat ing one 
or  more  r a n d o m  configurat ions of  the spin glass which bui ld the initial 
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population and afterward manipulating the system by mutations--random 
flipping of one or more spins without respect to the spin energy--and/or 
genetic mixing, i.e., mixing of spin sequences of two (or more) members of 
the population. Further, the manipulated members of the population check 
if their energy may be lowered through spin flips. Repeating this process 
several times allows one to generate a population of low-energy configura- 
tions. Recent calculations, (3' 4) however, showed that it may be more efficient 
to allow in addition random flipping to the free spins of the system--flipping 
of these spins does not change the spin energy. 

2. IMPLEMENTATION 

Generally we examine two different evolutionary algorithms: 

(A) Only Mutation Method. Only one initial spin configuration is 
calculated and subsequent generations are created by mutations of this 
generation. We introduce 10% mutations for each new generation, i.e., 
10% of the spins are flipped without regard to energy changes. Afterward 
the new generation is "equilibrated"--the system is updated in a regular 
way and all spin flips that lower the configuration energy are carried out. 

(B) Genetic Method. A random set of spin configurations is calculated 
initially--we chose a population of 1000 members--and afterward new 
generations are created by a combination of genetic exchange and muta- 
tion. Two "parents" are chosen randomly out of the population and a child 
is created by randomly mixing half of the spins (the genes) of each parent. 
This child replaces one of its parents--i.e., each pair may only create one 
common child. In addition to the genetic exchange process the child 
receives 10% mutations and afterward all spin flips that lower the con- 
figuration energy are carried out (regular updating). 

Each of these methods may be extended by the additional rule that free 
spins whose flipping does not influence the energy of the system ( "E=  0 
spins") perform random flipping. We call those methods 1-methods, i.e., 
A1, B1; and methods where the free spins are fixed, we call 2-methods, 
A2, B2. For 2-methods the number of sweeps through the lattice to 
find those spin configurations which lower the energy by flipping is a well- 
determined finite number, which can be recognized by the algorithm itself. 
At some time no further flippable spins are detected during one whole sweep, 
i.e., the spin configuration arrives at an optimal configuration and will not 
change during further sweeps--on the other hand, for 1-methods any time 
E = 0 spins may flip and the algorithm cannot stop. We restrict the maximum 
number of sweeps for 1-methods to L 2, which means that a mutation is able to 
influence the whole lattice in a random-walker-like manner. 
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To calculate the average ground-state energy of the finite-size _+ J spin 
glass we consider various samples with random configurations of the spin 
couplings Jg, at least 136 samples for the biggest L, and up to several 
10,000 samples for the smallest system sizes. The ground-state energy of 
each configuration and the average number of generations necessary to 
reach the ground-state energy are calculated by the following termination 
criterion: the algorithm calculates new generations continually and we con- 
sider between 32 and 136 samples simultaneously on different nodes of the 
parallel processor. If a member of a new generation shows a configuration 
energy less than the lowest energy calculated so far, this energy is taken to 
be the temporary ground-state energy of that sample, i.e., that node of the 
processor. Further, the number of generations evolved so far is saved. If the 
algorithm reaches 10 times (for the d =  3 spin glass, 100 times) this number 
of generations and cannot further lower the configuration energy of any 
sample on any node, then we consider that all the samples have reached 
their ground-state energies. The average number of generations necessary 
to reach the ground-state energy is calculated as the average of the number 
of those generations on each node where the last successful improvement 
of the configuration energy was registered. That is, the algorithm termi- 
nates on all nodes at the 750th (7500th) generation if one node calculates 
an energy improvement for its sample at the 75th generation and further no 
node calculates any energy improvements up to the 750th (7500th) genera- 
tion. Afterward every node is asked for the generation where the last energy 
improvement was calculated--of course all these numbers are less than or 
equal to 75--and the average of this number is considered to be the average 
generation number necessary to calculate the ground-state energies. 

3. R E S U L T S  

First of all we have to state that, in agreement with calculations of 
Stauffer, t6~ method A2 does not calculate the correct ground-state energy of 
the _+J spin glass. The ground-state energies calculated by this algorithm 
are much higher than those of all the other methods AI, B1, and B2. As 
shown by Stauffer, even for L ~ ~ the extrapolation of the ground-state 
energies does not agree with the expected spin-glass ground state. For that 
reason we will not consider strategy A2 any further. 

Figure 1 shows that the average ground-state energies calculated by 
methods A1, B1, and B2 agree for all examined system sizes L for the 
d =  2 spin glass. These results are confirmed by a more complex genetic 
2-strategy used in ref. 5. Thus the data in Fig. 1 give the dependence of the 
average ground-state energy of the d = 2 spin glass on the system size L. 
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Fig. 2. The average time necessary to find the ground-state energy. 
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Figure 2 shows the average time in seconds on a single iPSC860 pro- 
cessor required to find the ground state of the spin- glass system depending 
on the genetic strategy and the system size L. We include the data of a 
more complex genetic algorithm similar to that of ref. 5, calling these 
strategy C, i.e., C1 and C2, depending on the law for the free spins--which 
yield the same ground-state energies as shown in Fig 1. The C strategies 
are not really comparable to the A and B versions because these methods 
calculate a whole subset of genetic manipulations to replace all 1000 mem- 
bers of the old generation at once. For small system sizes this means 
calculating many more configurations than necessary to find the ground- 
state configuration. In particular, version C1 generates the ground-state 
energy within the first generation for nearly all systems examined. For the 
bigger system sizes version C1 is more efficient than version C2; however, 
for all calculated systems version B1 is faster than both C strategies. 
Decreasing the number of members of the population may improve the 
efficiency of the C strategies, but very small populations do not give correct 
results. 

Comparing versions A1, A2, B1, and B2, it can be seen that the dif- 
ferent treatment of the E =  0 spins influences the performance of the 
algorithm much more than the choice of the genetic strategy. Although the 
1-methods need much more time to calculate the "optimal configuration" 
for each created child, i.e., to recognize those spins which have to be flipped 
--L'-  sweeps instead of less than 10 for 2-methods, while in addition the 
calculation of random numbers for the E =  0 spins is necessary--these 
methods are much faster than the comparable 2-methods because fewer 
generations have to be calculated. For the C strategy this effect is not seen 
at small system sizes because the number of generations cannot be reduced 
to less than 1. In addition, the very simple only-mutation strategy (A), 
which was explicitly wrong for the 2-method, calculates correct results for 
the 1-method. 

All the curves show average times necessary to calculate minimum 
energies; often 10 or even 100 times this time is needed to reach the ground- 
state energies. Our simulations were computed on the Intel Paragon 
parallel computer at KFA Jiilich, using perfect, i.e., replication paralleliza- 
tion to calculate many samples. The maximum computing time available 
for a single system was 4 hr. 

In Fig. 3 the ground-state energy of the square spin glass is plotted 
against the system size L 2 for L = 4 up to L = 23 calculated with strategies 
A1 and B1. Extrapolation of these data gives an infinite-size ground state 
of - 1.401 + 0.0015, which agrees with the results of refs. 5 and 7-9. Finally 
Fig. 4 shows the data for the D = 3 spin glass computed with strategy B1 
and L = 3 up to L = 8. We extrapolate the ground state of the infinite cubic 
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Table I. Ground-State Energies of the +J  Spin Glass, 
Using Method B1 

1011 

L D = 2  D = 3  

3 - -  - 1.68138 _+0.00089 
4 - 1.31666 _+ 0.00127 - 1.73973 +_ 0.00058 
5 -- 1.34975 -+ 0.00060 - 1.76101 -+ 0.00054 
6 - 1.36728 -+ 0.00073 - 1.77059 _+ 0.00078 
7 - 1.37714 _+ 0.00089 - 1.77842 _+ 0.00111 
8 -- 1.38217 __+ 0.00053 -- 1.77901 +__ 0.00147 
9 - 1.38649 -+ 0.00053 - -  

10 - 1.38961 _+ 0.00043 - -  
1 1  - 1.39142 __-__+ 0.00042 - -  
13 - 1.39464 _+ 0.00097 - -  
17 -- 1.39641 -+ 0.00109 - -  
23 -- 1.39959 -+ 0.00101 - -  

oo -- 1.4010 _+ 0.0015 -- 1.786 +0.004 

Ref. 5 -- 1.400 _+ 0.005 -- 1.765 -+ 0.01 
Ref. 7 - 1.394 -+ 0.007 - 1.786 _+ 0.003 
Re['. 8 - 1.407 _+ 0.008 - -  
Ref. 9 - 1.4024 _+ 0.0012 - -  

spin glass to be - 1 . 7 8 6  _+ 0.004, which  is in excel lent  a g r e e m e n t  wi th  the 

s imula t ion  da t a  o f  ref. 7. Tab le  I gives a list o f  the g round - s t a t e  energies  of  

the systems and  the  p r o b a b l e  stat is t ical  e r rors  d e p e n d i n g  on  the system 

size. 

4. S U M M A R Y  

I n t r o d u c i n g  r a n d o m  fl ipping for the free spins o f  the system dur ing  the 

b io log ica l ly  m o t i v a t e d  con f igu ra t i on  search  as used by Rodr igues  and  de 
Ol ive i ra  genera l ly  gives be t te r  p e r f o r m a n c e  ca lcu la t ing  the  g round - s t a t e  

energies  o f  the  _ J  spin glass, i n d e p e n d e n t  o f  the basic evo lu t i ona ry  

s trategy.  F o r  the A and  B s t ra tegies  this fact can  be seen obv ious ly  f rom 
Fig. 2; the  C s t ra tegy is a s sumed  to s h o w  s imi lar  b e h a v i o r  for the b igger  

sys tem sizes, d e p e n d i n g  on  the size o f  the popu la t ion .  W e  th ink  tha t  the 
i n t roduc t i on  o f  r a n d o m  fl ipping for the  free spins reduces  the t ime  

necessary  to ca lcu la te  the g r o u n d - s t a t e  energies  o f  the  spin-glass  systems 

m u c h  m o r e  than  the  o p t i m i z a t i o n  o f  the basic  e v o l u t i o n a r y  strategy.  F o r  
example ,  we tested s o m e  va r i a t ions  o f  the genet ic  s t ra tegy for the B1 

m e t h o d - - a  se lect ion rule for the pa ren t s  acco rd ing  to  thei r  "fi tness," a 
select ion no t  of  single spins, bu t  o f  spin sequences ,  i.e., spin chains  dur ing  
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the gene-mixing process,  r e spec t ive ly - -and  dit not  see drast ic  improve-  
ments  for the time behavior  of  the algori thm. 

Based on this result we were able to use a very simple genetic algo- 
r i thm to determine the ground-s ta te  energies of  the square and  simple cubic 
spin glasses with relatively small computa t iona l  expense. 

Mos t  of  the compute r  t ime was spent calculat ing many  samples of  dif- 
ferent r andom configurat ions of  Jo" couplings to increase the accuracy of 
the average values for the small  systems. The computa t ion  time to reach 
the ground-s ta te  energy is less than  4 hr  with an iPSC860 processor  even 
for the biggest system examined.  On  the other  hand,  the calculat ion of  the 
energies of  a large number  of  samples is necessary to get precise date  for 
the small systems. This makes  possible high-qual i ty  e x t r a p o l a t i o n s - - t h e  
da ta  of  various samples show considerable  fluctuations. 
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NOTE ADDED IN PROOF 

With  a paral lel  implementa t ion  following A. Berengoltz and  J. Adler  
(to be publ ished)  we improved  our  results to - 1 . 4 0 1 + 0 . 0 0 1  and 
- 1 . 7 8 7  ___ 0.003 for the square and  simple cubic lattice, respectively. 
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